Conversion of Arenes into Cyano-arenes via Co-ordination to Manganese(1)

By P. J. C. WALKER and R. J. MAWBY*

(Department of Chemistry, The University of York, Heslington, York YO1 5DD)

Summary Oxidation of cyanocyclohexadienyl complexes $[(C_6H_{6-n}Me_nCN)Mn(CO)_3]$, obtained by reaction of cyanide ion with complexes $[(C_6H_{6-n}Me_n)Mn(CO)_3]^+$, yields free cyano-arene $C_6H_5^{-}Me_nCN$ uncontaminated by $C_6H_{6-n}Me_n$.

In a recent paper,¹ we reported the attack—under extremely mild conditions—by cyanide ion on co-ordinated arenes in complexes $[(C_6H_6-_nMe_n)Mn(CO)_3]^+$ to give *exo*-cyanocyclohexadienyl complexes of the type $(C_6H_{6-n}Me_nCN)Mn(CO)_3$. Prior to this report, the only nucleophiles known² to add to arenes in complexes of this and similar types were hydride, alkyl, and aryl, but we have now found that several other types of nucleophile, for example, CH(COMe)₂⁻, CH(CO₂Et)₂⁻, N₃⁻, OMe⁻, PPh₂⁻, NCS⁻, react in a similar manner, although the stability of many of the adducts obtained is low.

The prospect of nucleophilic addition to co-ordinated arenes by a wider range of reagents raises the possibility of synthesising useful substituted arenes by following this attack by abstraction of the *endo*-hydrogen atom from the carbon atom bearing the added substituent.

Whereas conventional abstracting reagents such as Ph_3C^+ , Et_3O^+ , and HBF_4 removed the cyano-group from *exo*-cyanocyclohexadienyl complexes to regenerate the original compounds $[(C_6H_{6-n}Me_n)Mn(CO)_3)^+$, we have found that reaction with cerium(IV) sulphate in sulphuric acid at room temperature breaks down the complexes to yield free cyano-arene uncontaminated by the unsubstituted arene $C_6H_{6-n}Me_n$. Thus, for example, the complex $(C_6H_6CN)Mn(CO)_3$, obtained from $[(C_6H_6)Mn(CO)_3]^+$ and cyanide ion, reacted with cerium(IV) sulphate to yield 80% of benzonitrile, C_6H_5CN , but *no* benzene. Similarly $(C_6H_3Me_3CN)Mn(CO)_3]^+$, yielded over 70% of mesito-nitrile, $C_6H_2Me_3CN$, and no mesitylene.

A similar degradation of cyclohexadienyl complexes of iron(II) by permanganate oxidation has recently been reported by Helling and Braitsch,³ but our own investigations have shown that arene complexes of iron(II) do not undergo the *range* of nucleophilic addition reactions

characteristic of the complexes [(arene)Mn(CO)₃]+ (being attacked only by hydride, alkyl, and aryl anions) and hence are much less useful as starting materials for the synthesis of substituted arenes.⁴

- P. J. C. Walker and R. J. Mawby, *Inorg. Chem.*, 1971, 10, 404.
 G. E. Herberich and G. Greiss, *J. Organometallic Chem.*, 1971, 27, 113.
 J. F. Helling and D. M. Braitsch, *J. Amer. Chem. Soc.*, 1970, 92, 7207.
 L. R. Aust and R. J. Mawby, unpublished results.

We thank Imperial Chemical Industries, Limited for a maintenance grant to P. J. C. W.

(Received, 18th January 1972; Com. 082.)